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1. 

Structural elements with non-uniform material properties are technically important in
many engineering situations. On the other hand, certain manufacturing processes may
generate undesired variations in the mechanical properties of a system and, in turn, these
variations will affect the static and dynamic response of the structural element.

The dynamic analysis of membranes with discontinuously varying material properties
has been the subject of many recent investigations. In a well-known paper, Spence and
Horgan [1] found upper and lower bounds for the natural frequencies of vibration of a
circular membrane with stepped radial density and they showed that eigenvalue estimation
techniques based on an integral equation approach are more effective than classical
variational techniques. A conformal mapping approach was used in reference [2] in the
case of composite membranes of regular polygonal shape whose inner circular core
possesses a density r1, while the remaining is characterized by r0.

In general previous investigations deal with composite, simply connected membranes.
Vibrating circular annular membranes of continuous and discontinuous variation of the

density in a radial direction have been studied recently by means of an approximate
variational approach [3]. An independent solution has also been obtained using the
differential quadrature method when the density varies in a continuous fashion, the
eigenvalues being in good agreement with those obtained previously [3].

The present paper deals with an exact solution of the problem of transverse vibrations
of a composite, doubly connected membrane with discontinuously varying thickness,
Figure 1.

2.    

Making use of the classical theory of vibrating membranes, the problem is governed by

92ui =
1
a2

i

12ui

1t2 , i=1, 2, (1)

where ai =zS/ri .
Now using the method of separation of variables, one writes

ui =Ui (r) einu eivt, n=0, 1, 2, . . . , (2)

and substituting in equation (1) one obtains
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r21Ui =0, (3)
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Figure 1. Non-homogeneous membrane executing transverse vibrations.

its solution being

U1 =AnJn0va1
r1+BnYn0va1

r1, U2 =CnJn0va2
r1+DnYn0va2

r1. (4a, b)

The frequency determinant is generated using the boundary conditions at r= a, b:

U1(a)=U2(b)=0 (5a, b)

and the compatibility (or continuity) conditions at r= c:

U1(c)=U2(c),
dU1

dr
(c)=

dU2

dr
(c), (6, 7)

The present study is concerned with the determination of frequency coefficients
corresponding to axisymmetric modes of vibration (n=0). Accordingly, expressions (4)
become

U1 =A0J00va1
r1+B0Y00va1

r1, (8a)

U2 =C0J00va2
r1+D0Y00va2

r1. (8b)

Substituting equations (8) into equations (5), (6) and (7), one obtains

A0J00va1
a1+B0Y00va1

a1=0,

A0J00va1
c1+B0Y00va1

c1−C0J00va2
c1−D0Y00va2

c1=0,
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−A0zr1J10va1
c1−B0zr1Y10va1

c1+C0zr2J10va2
c1+D0zr2Y10va2

c1=0,

C0J00va2
b1+D0Y00va2

b1=0. (9)

T 1

Values of V0i =zr2/Sv0ib for a composite, circular annular membrane
(a/b=0·1; c/b=0·5)

r2/r1 V01 V02 V03 V04 V05

0·10 3·9875 9·5624 15·3610 20·7426 24·6925
0·50 3·6790 8·0916 11·7855 15·9000 20·1864
0·90 3·3830 7·0370 10·5903 14·2391 17·7684
1·50 3·0050 6·2396 9·4429 12·6209 15·8262
2·00 2·7541 5·8671 8·6760 11·8511 14·5560
5·00 1·9324 4·6959 6·5718 8·8662 11·5082

10·00 1·4127 3·6006 5·5779 6·8254 8·7498

T 2

Values of V0i =zr2/Sv0ib for a composite, circular annular membrane
(a/b=0·20; c/b=0·5)

r2/r1 V01 V02 V03 V04 V05

0·10 4·2795 9·8238 15·7129 21·6171 27·2512
0·50 4·0763 8·8789 13·3222 17·3649 22·0097
0·90 3·8677 7·9706 11·9430 15·9677 20·0190
1·50 3·5672 7·0907 10·9376 14·3434 18·1608
2·00 3·3420 6·6561 10·2865 13·4090 17·1499
5·00 2·4665 5·5944 7·6971 11·0269 13·1399

10·00 1·8346 4·6245 6·3828 8·4369 11·1849

T 3

Values of V0i =zr2/Sv0ib for a composite, circular annular membrane
(a/b=0·30; c/b=0·5)

r2/r1 V01 V02 V03 V04 V05

0·10 4·6618 10·1788 16·0664 22·0801 28·1212
0·50 4·5549 9·6635 14·8762 19·7549 24·2906
0·90 4·4415 9·0777 13·6675 18·1727 22·7286
1·50 4·2636 8·2792 12·6145 16·9740 20·9602
2·00 4·1129 7·7717 12·1207 16·1096 19·8476
5·00 3·3295 6·4659 10·1371 12·9922 16·8898

10·00 2·5747 5·8447 7·8954 11·5638 13·3880
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Introducing the dimensionless parameters r1 = a/b, r2 = c/b, r= r1/r2 and V=zr2/S
vb, the secular determinant results:

J0"zrr1V) Y0(zrr1V) 0 0

J0(zrr2V) Y0(zrr2V) −J0(r2V) −Y0(r2V)G
G

G

G

G

G

G

G
G

G

G

G

G

G
−zrJ1(zrr2V) −zrY1(zrr2V) J1(r2V) Y1(r2V)

=0. (10)

0 0 J0(V) Y0(V)

3.  

The determination of the first five roots of the determinantal equation (10) has been
greatly facilitated by the use of Mathematica [4].

Tables 1–3 present values of V0i for a/b=0·1, 0·2 and 0·3, respectively, while c/b=0·5
for the three configurations.

It is important to point out that the fundamental eigenvalues computed by a variational
approach in reference [3] have been verified using the present, exact solution. Since they
are upper bounds they are higher than the exact eigenvalues, the differences being, in
general, less than 1%.
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